Peroxiredoxin 2 battles poly(ADP-ribose) polymerase 1- and p53-dependent prodeath pathways after ischemic injury.

نویسندگان

  • Rehana K Leak
  • Lili Zhang
  • Yumin Luo
  • Peiying Li
  • Haiping Zhao
  • Xiangrong Liu
  • Feng Ling
  • Jianping Jia
  • Jun Chen
  • Xunming Ji
چکیده

BACKGROUND AND PURPOSE Ischemic/reperfusion neuronal injury is characterized by accumulation of reactive oxygen species and oxidative DNA damage, which can trigger cell death by various signaling pathways. Two of these modes of death include poly(ADP-ribose) polymerase 1-mediated death or p53- and Bax-mediated apoptosis. The present study tested the hypothesis that peroxiredoxin 2 (PRX2) attenuates DNA damage-mediated prodeath signaling using in vitro and in vivo models of ischemic injury. The impact of this peroxide scavenger on p53- and poly(ADP-ribose) polymerase 1-mediated ischemic death is unknown. METHODS Neuronal PRX2 overexpression in primary cortical cultures and transgenic mice was combined with the poly(ADP-ribose) polymerase 1 inhibitor AG14361. AG14361 was also applied to p53 and Bax knockout cultures and mice and combined with the JNK inhibitor SP600125. DCF fluorescence, apurinic/apyrimidinic sites, single-strand breaks, Comet tail-length, nicotinamide adenine dinucleotide depletion, and viability were assessed in response to oxygen-glucose deprivation in cultures or transient focal cerebral ischemia in mice. RESULTS PRX2 attenuated reactive oxygen species, DNA damage, nicotinamide adenine dinucleotide depletion, and cell death. PRX2 knockdown exacerbated neuronal death after oxygen and glucose deprivation. PRX2 ameliorated poly(ADP-ribose) polymerase 1, p53, Bax, and caspase activation after ischemia. AG14361 reduced ischemic cell death in wild-type and p53 or Bax knockout cultures and animals but had no additional effect in PRX2-overexpressing mice. AG14361 and p53 knockout elicited additive effects with SP600125 on viability in vitro. Our findings support the existence of multiple parallel prodeath pathways with some crosstalk. CONCLUSIONS The promising therapeutic candidate PRX2 can clamp upstream DNA damage and efficiently inhibit multiple prodeath cascades operating in both parallel and interactive fashions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intranasal administration of a PARG inhibitor profoundly decreases ischemic brain injury.

Cumulative evidence has indicated a critical role of poly(ADP-ribose) polymerase-1 activation in ischemic brain damage. Poly(ADP-ribose) glycohydrolase (PARG) is a key enzyme in poly(ADP-ribose) catabolism. Our previous studies showed that PARG inhibitors, gallotannin (GT) and nobotanin B, can profoundly decrease oxidative cell death in vitro. Here, we tested the hypothesis that intranasal deli...

متن کامل

IL-17A Enhances Microglial Response to OGD by Regulating p53 and PI3K/Akt Pathways with Involvement of ROS/HMGB1

Cerebral ischemia-reperfusion injury (IRI) has a complex pathogenesis, and interleukin-17 (IL-17) is a newly identified class of the cytokine family that plays an important role in ischemic inflammation. An oxygen-glucose deprivation (OGD) model showed that IL-17A expression was significantly up-regulated in microglial cells. After IL-17A siRNA transfection, the inhibition of proliferation, and...

متن کامل

Involvement of NAD-Poly(ADP-Ribose) Metabolism in p53 Regulation and Its Consequences1

We have used two different approaches to study the consequences of NAD/poly(ADP-ribose) deficiency on p53 expression and its activity in V79-derived cell lines. In the first approach, we have used two cell lines that are deficient in poly(ADP-ribose) (pADPR) synthesis because of deficiency in the enzyme poly(ADP-ribose) polymerase (PARP). In a second approach, we have used a cell line that is d...

متن کامل

Poly(ADP-ribosyl)ation of p53 Contributes to TPEN-Induced Neuronal Apoptosis

Depletion of intracellular zinc by N,N,N',N'-tetrakis(2-pyridylmethyl) ethylenediamine (TPEN) induces p53-mediated protein synthesis-dependent apoptosis of mouse cortical neurons. Here, we examined the requirement for poly(ADP-ribose) polymerase (PARP)-1 as an upstream regulator of p53 in zinc depletion-induced neuronal apoptosis. First, we found that chemical inhibition or genetic deletion of ...

متن کامل

Involvement of NAD-poly(ADP-ribose) metabolism in p53 regulation and its consequences.

We have used two different approaches to study the consequences of NAD/poly(ADP-ribose) deficiency on p53 expression and its activity in V79-derived cell lines. In the first approach, we have used two cell lines that are deficient in poly(ADP-ribose) (pADPR) synthesis because of deficiency in the enzyme poly(ADP-ribose) polymerase (PARP). In a second approach, we have used a cell line that is d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Stroke

دوره 44 4  شماره 

صفحات  -

تاریخ انتشار 2013